Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474037

RESUMO

Protein kinase D (PKD) enzymes play important roles in regulating myocardial contraction, hypertrophy, and remodeling. One of the proteins phosphorylated by PKD is titin, which is involved in myofilament function. In this study, we aimed to investigate the role of PKD in cardiomyocyte function under conditions of oxidative stress. To do this, we used mice with a cardiomyocyte-specific knock-out of Prkd1, which encodes PKD1 (Prkd1loxP/loxP; αMHC-Cre; PKD1 cKO), as well as wild type littermate controls (Prkd1loxP/loxP; WT). We isolated permeabilized cardiomyocytes from PKD1 cKO mice and found that they exhibited increased passive stiffness (Fpassive), which was associated with increased oxidation of titin, but showed no change in titin ubiquitination. Additionally, the PKD1 cKO mice showed increased myofilament calcium (Ca2+) sensitivity (pCa50) and reduced maximum Ca2+-activated tension. These changes were accompanied by increased oxidation and reduced phosphorylation of the small myofilament protein cardiac myosin binding protein C (cMyBPC), as well as altered phosphorylation levels at different phosphosites in troponin I (TnI). The increased Fpassive and pCa50, and the reduced maximum Ca2+-activated tension were reversed when we treated the isolated permeabilized cardiomyocytes with reduced glutathione (GSH). This indicated that myofilament protein oxidation contributes to cardiomyocyte dysfunction. Furthermore, the PKD1 cKO mice exhibited increased oxidative stress and increased expression of pro-inflammatory markers interleukin (IL)-6, IL-18, and tumor necrosis factor alpha (TNF-α). Both oxidative stress and inflammation contributed to an increase in microtubule-associated protein 1 light chain 3 (LC3)-II levels and heat shock response by inhibiting the mammalian target of rapamycin (mTOR) in the PKD1 cKO mouse myocytes. These findings revealed a previously unknown role for PKD1 in regulating diastolic passive properties, myofilament Ca2+ sensitivity, and maximum Ca2+-activated tension under conditions of oxidative stress. Finally, we emphasized the importance of PKD1 in maintaining the balance of oxidative stress and inflammation in the context of autophagy, as well as cardiomyocyte function.


Assuntos
Miofibrilas , Proteína Quinase C , Processamento de Proteína Pós-Traducional , Camundongos , Animais , Conectina/metabolismo , Miofibrilas/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Proteínas dos Microfilamentos/metabolismo , Homeostase , Inflamação/metabolismo , Cálcio/metabolismo , Mamíferos/metabolismo
2.
Int J Cardiol ; 362: 196-205, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35643215

RESUMO

INTRODUCTION: The respiratory illness triggered by severe acute respiratory syndrome virus-2 (SARS-CoV-2) is often particularly serious or fatal amongst patients with pre-existing heart conditions. Although the mechanisms underlying SARS-CoV-2-related cardiac damage remain elusive, inflammation (i.e. 'cytokine storm') and oxidative stress are likely involved. METHODS AND RESULTS: Here we sought to determine: 1) if cardiomyocytes are targeted by SARS-CoV-2 and 2) how inflammation and oxidative stress promote the viral entry into cardiac cells. We analysed pro-inflammatory and oxidative stress and its impact on virus entry and virus-associated cardiac damage from SARS-CoV-2 infected patients and compared it to left ventricular myocardial tissues obtained from non-infected transplanted hearts either from end stage heart failure or non-failing hearts (donor group). We found that neuropilin-1 potentiates SARS-CoV-2 entry into human cardiomyocytes, a phenomenon driven by inflammatory and oxidant signals. These changes accounted for increased proteases activity and apoptotic markers thus leading to cell damage and apoptosis. CONCLUSION: This study provides new insights into the mechanisms of SARS-CoV-2 entry into the heart and defines promising targets for antiviral interventions for COVID-19 patients with pre-existing heart conditions or patients with co-morbidities.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Inflamação , Miócitos Cardíacos , Estresse Oxidativo
3.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457283

RESUMO

Human wild type (wt) cardiac α-actin and its mutants p.A295S or p.R312H and p.E361G correlated with hypertrophic or dilated cardiomyopathy, respectively, were expressed by using the baculovirus/Sf21 insect cell system. The c-actin variants inhibited DNase I, indicating maintenance of their native state. Electron microscopy showed the formation of normal appearing actin filaments though they showed mutant specific differences in length and straightness correlating with their polymerization rates. TRITC-phalloidin staining showed that p.A295S and p.R312H exhibited reduced and the p.E361G mutant increased lengths of their formed filaments. Decoration of c-actins with cardiac tropomyosin (cTm) and troponin (cTn) conveyed Ca2+-sensitivity of the myosin-S1 ATPase stimulation, which was higher for the HCM p.A295S mutant and lower for the DCM p.R312H and p.E361G mutants than for wt c-actin. The lower Ca2+-sensitivity of myosin-S1 stimulation by both DCM actin mutants was corrected by the addition of levosimendan. Ca2+-dependency of the movement of pyrene-labeled cTm along polymerized c-actin variants decorated with cTn corresponded to the relations observed for the myosin-S1 ATPase stimulation though shifted to lower Ca2+-concentrations. The N-terminal C0C2 domain of cardiac myosin-binding protein-C increased the Ca2+-sensitivity of the pyrene-cTM movement of bovine, recombinant wt, p.A295S, and p.E361G c-actins, but not of the p.R312H mutant, suggesting decreased affinity to cTm.


Assuntos
Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Citoesqueleto de Actina/genética , Actinas/química , Actinas/genética , Animais , Cálcio , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Bovinos , Humanos , Hipertrofia , Mutação , Miosinas , Tropomiosina/genética
5.
Int J Cardiol ; 344: 160-169, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517018

RESUMO

Hypertrophic cardiomyopathy (HCM) is a complex myocardial disorder with no well-established disease-modifying therapy so far. Our study aimed to investigate how autophagy, oxidative stress, inflammation, stress signalling pathways, and apoptosis are hallmark of HCM and their contribution to the cardiac dysfunction. Demembranated cardiomyocytes from patients with HCM display increased titin-based stiffness (Fpassive), which was corrected upon antioxidant treatment. Titin as a main determinant of Fpassive was S-glutathionylated and highly ubiquitinated in HCM patients. This was associated with a shift in the balance of reduced and oxidized forms of glutathione (GSH and GSSG, respectively). Both heat shock proteins (HSP27 and α-ß crystalline) were upregulated and S-glutathionylated in HCM. Administration of HSPs in vitro significantly reduced HCM cardiomyocyte stiffness. High levels of the phosphorylated monomeric superoxide anion-generating endothelial nitric oxide synthase (eNOS), decreased nitric oxide (NO) bioavailability, decreased soluble guanylyl cyclase (sGC) activity, and high levels of 3-nitrotyrosine were observed in HCM. Many regulators of signal transduction pathways that are involved in autophagy, apoptosis, cardiac contractility, and growth including the mitogen-activated protein kinase (MAPK), protein kinase B (AKT), glycogen synthase kinase 3ß (GSK-3ß), mammalian target of rapamycin (mTOR), forkhead box O transcription factor (FOXO), c-Jun N-terminal protein kinase (JNK), and extracellular-signal-regulated kinase (ERK1/2) were modified in HCM. The apoptotic factors cathepsin, procaspase 3, procaspase 9 and caspase 12, but not caspase 9, were elevated in HCM hearts and associated with increased proinflammatory cytokines (Interleukin 6 (IL-6), interleukin 18 (IL-18), intercellular cell adhesion molecule-1 (ICAM1), vascular cell adhesion molecule-1 (VCAM1), the Toll-like receptors 2 (TLR2) and the Toll-like receptors 4 (TLR4)) and oxidative stress (3-nitrotyrosine and hydrogen peroxide (H2O2)). Here we reveal stress signalling and impaired PQS as potential mechanisms underlying the HCM phenotype. Our data suggest that reducing oxidative stress can be a viable therapeutic approach to attenuating the severity of cardiac dysfunction in heart failure and potentially in HCM and prevent its progression.


Assuntos
Cardiomiopatia Hipertrófica , Peróxido de Hidrogênio , Apoptose , MAP Quinases Reguladas por Sinal Extracelular , Humanos , Estresse Oxidativo
6.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502534

RESUMO

Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1 (p.cTnC-G34S) and TNNI3 (p.cTnI-D127Y) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit interactions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient's myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations.


Assuntos
Cardiomiopatias/genética , Mutação de Sentido Incorreto , Miofibrilas/metabolismo , Troponina I/genética , Adenosina Trifosfatases/metabolismo , Adulto , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Catequina/análogos & derivados , Catequina/farmacologia , Humanos , Lactente , Masculino , Microscopia Eletrônica de Transmissão , Miofibrilas/efeitos dos fármacos , Miofibrilas/ultraestrutura , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Índice de Gravidade de Doença , Simendana/farmacologia , Tropomiosina/metabolismo , Troponina I/metabolismo
7.
Antioxidants (Basel) ; 10(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34356314

RESUMO

The human mutant cardiac α-actins p.A295S or p.R312H and p.E361G, correlated with hypertrophic or dilated cardiomyopathy, respectively, were expressed by the baculovirus/Sf21 insect cell system and purified to homogeneity. The purified cardiac actins maintained their native state but showed differences in Ca2+-sensitivity to stimulate the myosin-subfragment1 ATPase. Here we analyzed the interactions of these c-actins with actin-binding and -modifying proteins implicated in cardiomyocyte differentiation. We demonstrate that Arp2/3 complex and the formin mDia3 stimulated the polymerization rate and extent of the c-actins, albeit to different degrees. In addition, we tested the effect of the MICAL-1 monooxygenase, which modifies the supramolecular actin organization during development and adaptive processes. MICAL-1 oxidized these c-actin variants and induced their de-polymerization, albeit at different rates. Transfection experiments using MDCK cells demonstrated the preferable incorporation of wild type and p.A295S c-actins into their microfilament system but of p.R312H and p.E361G actins into the submembranous actin network. Transduction of neonatal rat cardiomyocytes with adenoviral constructs coding HA-tagged c-actin variants showed their incorporation into microfilaments after one day in culture and thereafter into thin filaments of nascent sarcomeric structures at their plus ends (Z-lines) except the p.E361G mutant, which preferentially incorporated at the minus ends.

8.
Antioxidants (Basel) ; 10(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34356367

RESUMO

Oxidative stress is defined as an imbalance between the antioxidant defense system and the production of reactive oxygen species (ROS). At low levels, ROS are involved in the regulation of redox signaling for cell protection. However, upon chronical increase in oxidative stress, cell damage occurs, due to protein, DNA and lipid oxidation. Here, we investigated the oxidative modifications of myofilament proteins, and their role in modulating cardiomyocyte function in end-stage human failing hearts. We found altered maximum Ca2+-activated tension and Ca2+ sensitivity of force production of skinned single cardiomyocytes in end-stage human failing hearts compared to non-failing hearts, which was corrected upon treatment with reduced glutathione enzyme. This was accompanied by the increased oxidation of troponin I and myosin binding protein C, and decreased levels of protein kinases A (PKA)- and C (PKC)-mediated phosphorylation of both proteins. The Ca2+ sensitivity and maximal tension correlated strongly with the myofilament oxidation levels, hypo-phosphorylation, and oxidative stress parameters that were measured in all the samples. Furthermore, we detected elevated titin-based myocardial stiffness in HF myocytes, which was reversed by PKA and reduced glutathione enzyme treatment. Finally, many oxidative stress and inflammation parameters were significantly elevated in failing hearts compared to non-failing hearts, and corrected upon treatment with the anti-oxidant GSH enzyme. Here, we provide evidence that the altered mechanical properties of failing human cardiomyocytes are partially due to phosphorylation, S-glutathionylation, and the interplay between the two post-translational modifications, which contribute to the development of heart failure.

9.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429969

RESUMO

The sarcomere as the smallest contractile unit is prone to alterations in its functional, structural and associated proteins. Sarcomeric dysfunction leads to heart failure or cardiomyopathies like hypertrophic (HCM) or restrictive cardiomyopathy (RCM) etc. Genetic based RCM, a very rare but severe disease with a high mortality rate, might be induced by mutations in genes of non-sarcomeric, sarcomeric and sarcomere associated proteins. In this review, we discuss the functional effects in correlation to the phenotype and present an integrated model for the development of genetic RCM.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Restritiva/genética , Insuficiência Cardíaca/genética , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Restritiva/complicações , Cardiomiopatia Restritiva/patologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/patologia , Humanos , Mutação/genética , Linhagem , Fenótipo
10.
Front Physiol ; 11: 345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523538

RESUMO

AIMS: Our aim was to investigate the effect of nitric oxide (NO)-independent activation of soluble guanylyl cyclase (sGC) on cardiomyocyte function in a hypertensive animal model with diastolic dysfunction and in biopsies from human heart failure with preserved ejection fraction (HFpEF). METHODS: Dahl salt-sensitive (DSS) rats and control rats were fed a high-salt diet for 10 weeks and then acutely treated in vivo with the sGC activator BAY 58-2667 (cinaciguat) for 30 min. Single skinned cardiomyocyte passive stiffness (Fpassive) was determined in rats and human myocardium biopsies before and after acute treatment. Titin phosphorylation, activation of the NO/sGC/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) cascade, as well as hypertrophic pathways including NO/sGC/cGMP/PKG, PKA, calcium-calmodulin kinase II (CaMKII), extracellular signal-regulated kinase 2 (ERK2), and PKC were assessed. In addition, we explored the contribution of pro-inflammatory cytokines and oxidative stress levels to the modulation of cardiomyocyte function. Immunohistochemistry and electron microscopy were used to assess the translocation of sGC and connexin 43 proteins in the rat model before and after treatment. RESULTS: High cardiomyocyte Fpassive was found in rats and human myocardial biopsies compared to control groups, which was attributed to hypophosphorylation of total titin and to deranged site-specific phosphorylation of elastic titin regions. This was accompanied by lower levels of PKG and PKA activity, along with dysregulation of hypertrophic pathway markers such as CaMKII, PKC, and ERK2. Furthermore, DSS rats and human myocardium biopsies showed higher pro-inflammatory cytokines and oxidative stress compared to controls. DSS animals benefited from treatment with the sGC activator, as Fpassive, titin phosphorylation, PKG and the hypertrophic pathway kinases, pro-inflammatory cytokines, and oxidative stress markers all significantly improved to the level observed in controls. Immunohistochemistry and electron microscopy revealed a translocation of sGC protein toward the intercalated disc and t-tubuli following treatment in both control and DSS samples. This translocation was confirmed by staining for the gap junction protein connexin 43 at the intercalated disk. DSS rats showed a disrupted connexin 43 pattern, and sGC activator was able to partially reduce disruption and increase expression of connexin 43. In human HFpEF biopsies, the high Fpassive, reduced titin phosphorylation, dysregulation of the NO-sGC-cGMP-PKG pathway and PKA activity level, and activity of kinases involved in hypertrophic pathways CaMKII, PKC, and ERK2 were all significantly improved by sGC treatment and accompanied by a reduction in pro-inflammatory cytokines and oxidative stress markers. CONCLUSION: Our data show that sGC activator improves cardiomyocyte function, reduces inflammation and oxidative stress, improves sGC-PKG signaling, and normalizes hypertrophic kinases, indicating that it is a potential treatment option for HFpEF patients and perhaps also for cases with increased hypertrophic signaling.

11.
Front Physiol ; 11: 240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351396

RESUMO

The giant protein titin performs structure-preserving functions in the sarcomere and is important for the passive stiffness (Fpassive) of cardiomyocytes. Protein kinase D (PKD) enzymes play crucial roles in regulating myocardial contraction, hypertrophy, and remodeling. PKD phosphorylates myofilament proteins, but it is not known whether the giant protein titin is also a PKD substrate. Here, we aimed to determine whether PKD phosphorylates titin and thereby modulates cardiomyocyte Fpassive in normal and failing myocardium. The phosphorylation of titin was assessed in cardiomyocyte-specific PKD knock-out mice (cKO) and human hearts using immunoblotting with a phosphoserine/threonine and a phosphosite-specific titin antibody. PKD-dependent site-specific titin phosphorylation in vivo was quantified by mass spectrometry using stable isotope labeling by amino acids in cell culture (SILAC) of SILAC-labeled mouse heart protein lysates that were mixed with lysates isolated from hearts of either wild-type control (WT) or cKO mice. Fpassive of single permeabilized cardiomyocytes was recorded before and after PKD and HSP27 administration. All-titin phosphorylation was reduced in cKO compared to WT hearts. Multiple conserved PKD-dependent phosphosites were identified within the Z-disk, A-band and M-band regions of titin by quantitative mass spectrometry, and many PKD-dependent phosphosites detected in the elastic titin I-band region were significantly decreased in cKO. Analysis of titin site-specific phosphorylation showed unaltered or upregulated phosphorylation in cKO compared to matched WT hearts. Fpassive was elevated in cKO compared to WT cardiomyocytes and PKD administration lowered Fpassive of WT and cKO cardiomyocytes. Cardiomyocytes from hypertrophic cardiomyopathy (HCM) patients showed higher Fpassive compared to control hearts and significantly lower Fpassive after PKD treatment. In addition, we found higher phosphorylation at CaMKII-dependent titin sites in HCM compared to control hearts. Expression and phosphorylation of HSP27, a substrate of PKD, were elevated in HCM hearts, which was associated with increased PKD expression and phosphorylation. The relocalization of HSP27 in HCM away from the sarcomeric Z-disk and I-band suggested that HSP27 failed to exert its protective action on titin extensibility. This protection could, however, be restored by administration of HSP27, which significantly reduced Fpassive in HCM cardiomyocytes. These findings establish a previously unknown role for PKDin regulating diastolic passive properties of healthy and diseased hearts.

12.
PLoS One ; 15(3): e0229227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32182250

RESUMO

TNNI3 encoding cTnI, the inhibitory subunit of the troponin complex, is the main target for mutations leading to restrictive cardiomyopathy (RCM). Here we investigate two cTnI-R170G/W amino acid replacements, identified in infantile RCM patients, which are located in the regulatory C-terminus of cTnI. The C-terminus is thought to modulate the function of the inhibitory region of cTnI. Both cTnI-R170G/W strongly enhanced the Ca2+-sensitivity of skinned fibres, as is typical for RCM-mutations. Both mutants strongly enhanced the affinity of troponin (cTn) to tropomyosin compared to wildtype cTn, whereas binding to actin was either strengthened (R170G) or weakened (R170W). Furthermore, the stability of reconstituted thin filaments was reduced as revealed by electron microscopy. Filaments containing R170G/W appeared wavy and showed breaks. Decoration of filaments with myosin subfragment S1 was normal in the presence of R170W, but was irregular with R170G. Surprisingly, both mutants did not affect the Ca2+-dependent activation of reconstituted cardiac thin filaments. In the presence of the N-terminal fragment of cardiac myosin binding protein C (cMyBPC-C0C2) cooperativity of thin filament activation was increased only when the filaments contained wildtype cTn. No effect was observed in the presence of cTn containing R170G/W. cMyBPC-C0C2 significantly reduced binding of wildtype troponin to actin/tropomyosin, but not of both mutant cTn. Moreover, we found a direct troponin/cMyBPC-C0C2 interaction using microscale thermophoresis and identified cTnI and cTnT, but not cTnC as binding partners for cMyBPC-C0C2. Only cTn containing cTnI-R170G showed a reduced affinity towards cMyBPC-C0C2. Our results suggest that the RCM cTnI variants R170G/W impair the communication between thin and thick filament proteins and destabilize thin filaments.


Assuntos
Substituição de Aminoácidos , Cardiomiopatia Restritiva/genética , Miocárdio/metabolismo , Sarcômeros/metabolismo , Troponina I/genética , Actinas/metabolismo , Animais , Cálcio/metabolismo , Cardiomiopatia Restritiva/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Pré-Escolar , Cobaias , Humanos , Microscopia Eletrônica , Modelos Biológicos , Ligação Proteica , Tropomiosina/metabolismo
13.
PLoS One ; 13(2): e0192322, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29466442

RESUMO

AIMS: In contrast to the membrane bound adenylyl cyclases, the soluble adenylyl cyclase (sAC) is activated by bicarbonate and divalent ions including calcium. sAC is located in the cytosol, nuclei and mitochondria of several tissues including cardiac muscle. However, its role in cardiac pathology is poorly understood. Here we investigate whether sAC is involved in hypertrophic growth using two different model systems. METHODS AND RESULTS: In isolated adult rat cardiomyocytes hypertrophy was induced by 24 h ß1-adrenoceptor stimulation using isoprenaline (ISO) and a ß2-adrenoceptor antagonist (ICI118,551). To monitor hypertrophy cell size along with RNA/DNA- and protein/DNA ratios as well as the expression level of α-skeletal actin were analyzed. sAC activity was suppressed either by treatment with its specific inhibitor KH7 or by knockdown. Both pharmacological inhibition and knockdown blunted hypertrophic growth and reduced expression levels of α-skeletal actin in ISO/ICI treated rat cardiomyocytes. To analyze the underlying cellular mechanism expression levels of phosphorylated CREB, B-Raf and Erk1/2 were examined by western blot. The results suggest the involvement of B-Raf, but not of Erk or CREB in the pro-hypertrophic action of sAC. In wild type and sAC knockout mice pressure overload was induced by transverse aortic constriction. Hemodynamics, heart weight and the expression level of the atrial natriuretic peptide were analyzed. In accordance, transverse aortic constriction failed to induce hypertrophy in sAC knockout mice. Mechanistic analysis revealed a potential role of Erk1/2 in TAC-induced hypertrophy. CONCLUSION: Soluble adenylyl cyclase might be a new pivotal player in the cardiac hypertrophic response either to long-term ß1-adrenoceptor stimulation or to pressure overload.


Assuntos
Adenilil Ciclases/metabolismo , Agonistas Adrenérgicos beta/efeitos adversos , Cardiomegalia/enzimologia , Isoproterenol/efeitos adversos , Animais , Cardiomegalia/induzido quimicamente , Camundongos , Pressão , Ratos
14.
Cardiovasc Res ; 101(1): 108-19, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24127233

RESUMO

AIMS: The region-specific mechanical function of left ventricular (LV) murine cardiomyocytes and the role of phosphorylation and oxidative modifications of myofilament proteins were investigated in the process of post-myocardial infarction (MI) remodelling 10 weeks after ligation of the left anterior descending (LAD) coronary artery. METHODS AND RESULTS: Permeabilized murine cardiomyocytes from the remaining anterior and a remote non-infarcted inferior LV area were compared with those of non-infarcted age-matched controls. Myofilament phosphorylation, sulfhydryl (SH) oxidation, and carbonylation were also assayed. Ca(2+) sensitivity of force production was significantly lower in the anterior wall (pCa50: 5.81 ± 0.03, means ± SEM, at 2.3 µm sarcomere length) than that in the controls (pCa50: 5.91 ± 0.02) or in the MI inferior area (pCa50: 5.88 ± 0.02). The level of troponin I phosphorylation was lower and that of myofilament protein SH oxidation was higher in the anterior location relative to controls, but these changes did not explain the differences in Ca(2+) sensitivities. On the other hand, significantly higher carbonylation levels, [e.g. in myosin heavy chain (MHC) and actin] were observed in the MI anterior wall [carbonylation index (CI), CIMHC: 2.06 ± 0.46, CIactin: 1.46 ± 0.18] than in the controls (CI: 1). In vitro Fenton-based myofilament carbonylation in the control cardiomyocytes also decreased the Ca(2+) sensitivity of force production irrespective of the phosphorylation status of the myofilaments. Furthermore, the Ca(2+) sensitivity correlated strongly with myofilament carbonylation levels in all investigated samples. CONCLUSION: Post-MI myocardial remodelling involves increased myofibrillar protein carbonylation and decreased Ca(2+) sensitivity of force production, leading potentially to contractile dysfunction in the remaining cardiomyocytes of the infarcted area.


Assuntos
Proteínas Musculares/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Remodelação Ventricular , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Infarto do Miocárdio/fisiopatologia , Carbonilação Proteica , Troponina I/metabolismo , Função Ventricular Esquerda
15.
PLoS One ; 8(10): e74847, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116014

RESUMO

AIMS: Protein kinase Cα (PKCα) is one of the predominant PKC isoforms that phosphorylate cardiac troponin. PKCα is implicated in heart failure and serves as a potential therapeutic target, however, the exact consequences for contractile function in human myocardium are unclear. This study aimed to investigate the effects of PKCα phosphorylation of cardiac troponin (cTn) on myofilament function in human failing cardiomyocytes and to resolve the potential targets involved. METHODS AND RESULTS: Endogenous cTn from permeabilized cardiomyocytes from patients with end-stage idiopathic dilated cardiomyopathy was exchanged (∼69%) with PKCα-treated recombinant human cTn (cTn (DD+PKCα)). This complex has Ser23/24 on cTnI mutated into aspartic acids (D) to rule out in vitro cross-phosphorylation of the PKA sites by PKCα. Isometric force was measured at various [Ca(2+)] after exchange. The maximal force (Fmax) in the cTn (DD+PKCα) group (17.1±1.9 kN/m(2)) was significantly reduced compared to the cTn (DD) group (26.1±1.9 kN/m(2)). Exchange of endogenous cTn with cTn (DD+PKCα) increased Ca(2+)-sensitivity of force (pCa50 = 5.59±0.02) compared to cTn (DD) (pCa50 = 5.51±0.02). In contrast, subsequent PKCα treatment of the cells exchanged with cTn (DD+PKCα) reduced pCa50 to 5.45±0.02. Two PKCα-phosphorylated residues were identified with mass spectrometry: Ser198 on cTnI and Ser179 on cTnT, although phosphorylation of Ser198 is very low. Using mass spectrometry based-multiple reaction monitoring, the extent of phosphorylation of the cTnI sites was quantified before and after treatment with PKCα and showed the highest phosphorylation increase on Thr143. CONCLUSION: PKCα-mediated phosphorylation of the cTn complex decreases Fmax and increases myofilament Ca(2+)-sensitivity, while subsequent treatment with PKCα in situ decreased myofilament Ca(2+)-sensitivity. The known PKC sites as well as two sites which have not been previously linked to PKCα are phosphorylated in human cTn complex treated with PKCα with a high degree of specificity for Thr143.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Quinase C/metabolismo , Troponina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miofibrilas/metabolismo , Fosforilação , Proteômica
16.
J Cell Mol Med ; 15(11): 2399-410, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21143387

RESUMO

Epicardial adipose tissue (EAT) has been implicated in the development of heart disease. Nonetheless, the crosstalk between factors secreted from EAT and cardiomyocytes has not been studied. Here, we examined the effect of factors secreted from EAT on contractile function and insulin signalling in primary rat cardiomocytes. EAT and subcutaneous adipose tissue (SAT) were isolated from guinea pigs fed a high-fat (HFD) or standard diet. HFD feeding for 6 months induced glucose intolerance, and decreased fractional shortening and ejection fraction (all P < 0.05). Conditioned media (CM) generated from EAT and SAT explants were subjected to cytokine profiling using antibody arrays, or incubated with cardiomyocytes to assess the effects on insulin action and contractile function. Eleven factors were differentially secreted by EAT when compared to SAT. Furthermore, secretion of 30 factors by EAT was affected by HFD feeding. Most prominently, activin A-immunoreactivity was 6.4-fold higher in CM from HFD versus standard diet-fed animals and, 2-fold higher in EAT versus SAT. In cardiomyocytes, CM from EAT of HFD-fed animals increased SMAD2-phosphorylation, a marker for activin A-signalling, decreased sarcoplasmic-endoplasmic reticulum calcium ATPase 2a expression, and reduced insulin-mediated phosphorylation of Akt-Ser473 versus CM from SAT and standard diet-fed animals. Finally, CM from EAT of HFD-fed animals as compared to CM from the other groups markedly reduced sarcomere shortening and cytosolic Ca(2+) fluxes in cardiomyocytes. These data provide evidence for an interaction between factors secreted from EAT and cardiomyocyte function.


Assuntos
Resistência à Insulina , Miócitos Cardíacos/fisiologia , Gordura Subcutânea/fisiologia , Ativinas/biossíntese , Animais , Cálcio/análise , Doenças Cardiovasculares/complicações , Células Cultivadas , Diabetes Mellitus Tipo 2/etiologia , Gorduras na Dieta , Cobaias , Insulina/metabolismo , Miócitos Cardíacos/patologia , Pericárdio/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos Lew , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia , Transdução de Sinais , Proteína Smad2/metabolismo , Gordura Subcutânea/metabolismo
17.
J Mol Cell Cardiol ; 48(5): 954-63, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20079747

RESUMO

Protein kinase A (PKA)-mediated phosphorylation of Ser23/24 of cardiac troponin I (cTnI) causes a reduction in Ca(2+)-sensitivity of force development. This study aimed to determine whether the PKA-induced modulation of the Ca(2+)-sensitivity is solely due to cTnI phosphorylation or depends on the phosphorylation status of other sarcomeric proteins. Endogenous troponin (cTn) complex in donor cardiomyocytes was partially exchanged (up to 66+/-1%) with recombinant unphosphorylated human cTn and in failing cells similar exchange was achieved using PKA-(bis)phosphorylated cTn complex. Cardiomyocytes immersed in exchange solution without complex added served as controls. Partial exchange of unphosphorylated cTn complex in donor tissue significantly increased Ca(2+)-sensitivity (pCa(50)) to 5.50+/-0.02 relative to the donor control value (pCa(50)=5.43+/-0.04). Exchange in failing tissue with PKA-phosphorylated cTn complex did not change Ca(2+)-sensitivity relative to the failing control (pCa(50)=5.60+/-0.02). Subsequent treatment of the cardiomyocytes with the catalytic subunit of PKA significantly decreased Ca(2+)-sensitivity in donor and failing tissue. Analysis of phosphorylated cTnI species revealed the same distribution of un-, mono- and bis-phosphorylated cTnI in donor control and in failing tissue exchanged with PKA-phosphorylated cTn complex. Phosphorylation of myosin-binding protein-C in failing tissue was significantly lower compared to donor tissue. These differences in Ca(2+)-sensitivity in donor and failing cells, despite similar distribution of cTnI species, could be abolished by subsequent PKA-treatment and indicate that other targets of PKA are involved the reduction of Ca(2+)-sensitivity. Our findings suggest that the sarcomeric phosphorylation background, which is altered in cardiac disease, influences the impact of cTnI Ser23/24 phosphorylation by PKA on Ca(2+)-sensitivity.


Assuntos
Cálcio/metabolismo , Miocárdio/metabolismo , Troponina I/metabolismo , Análise de Variância , Western Blotting , Proteínas de Transporte/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Fosforilação , Sarcômeros/metabolismo
18.
Basic Res Cardiol ; 105(2): 289-300, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19655190

RESUMO

Previous studies indicated that the increase in protein kinase C (PKC)-mediated myofilament protein phosphorylation observed in failing myocardium might be detrimental for contractile function. This study was designed to reveal and compare the effects of PKCalpha- and PKCepsilon-mediated phosphorylation on myofilament function in human myocardium. Isometric force was measured at different [Ca2+] in single permeabilized cardiomyocytes from failing human left ventricular tissue. Activated PKCalpha and PKCepsilon equally reduced Ca2+ sensitivity in failing cardiomyocytes (DeltapCa50 = 0.08 +/- 0.01). Both PKC isoforms increased phosphorylation of troponin I- (cTnI) and myosin binding protein C (cMyBP-C) in failing cardiomyocytes. Subsequent incubation of failing cardiomyocytes with the catalytic subunit of protein kinase A (PKA) resulted in a further reduction in Ca2+ sensitivity, indicating that the effects of both PKC isoforms were not caused by cross-phosphorylation of PKA sites. Both isozymes showed no effects on maximal force and only PKCalpha resulted in a modest significant reduction in passive force. Effects of PKCalpha were only minor in donor cardiomyocytes, presumably because of already saturated cTnI and cMyBP-C phosphorylation levels. Donor tissue could therefore be used as a tool to reveal the functional effects of troponin T (cTnT) phosphorylation by PKCalpha. Massive dephosphorylation of cTnT with alkaline phosphatase increased Ca2+ sensitivity. Subsequently, PKCalpha treatment of donor cardiomyocytes reduced Ca2+ sensitivity (DeltapCa50 = 0.08 +/- 0.02) and solely increased phosphorylation of cTnT, but did not affect maximal and passive force. PKCalpha- and PKCepsilon-mediated phosphorylation of cMyBP-C and cTnI as well as cTnT decrease myofilament Ca2+ sensitivity and may thereby reduce contractility and enhance relaxation of human myocardium.


Assuntos
Cálcio/metabolismo , Insuficiência Cardíaca/enzimologia , Miocárdio/enzimologia , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-épsilon/metabolismo , Adolescente , Adulto , Proteínas de Transporte/metabolismo , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Troponina I/metabolismo , Troponina T/metabolismo , Adulto Jovem
19.
Physiol Genomics ; 38(1): 7-15, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19293330

RESUMO

Cardiomyocytes derived from pluripotent embryonic stem cells (ESC) have the advantage of providing a source for standardized cell cultures. However, little is known on the regulation of the genome during differentiation of ESC to cardiomyocytes. Here, we characterize the transcriptome of the mouse ESC line CM7/1 during differentiation into beating cardiomyocytes and compare the gene expression profiles with those from primary adult murine cardiomyocytes and left ventricular myocardium. We observe that the cardiac gene expression pattern of fully differentiated CM7/1-ESC is highly similar to adult primary cardiomyocytes and murine myocardium, respectively. This finding is underlined by demonstrating pharmacological effects of catecholamines and endothelin-1 on ESC-derived cardiomyocytes. Furthermore, we monitor the temporal changes in gene expression pattern during ESC differentiation with a special focus on transcription factors involved in cardiomyocyte differentiation. Thus, CM7/1-ESC-derived cardiomyocytes are a promising new tool for functional studies of cardiomyocytes in vitro and for the analysis of the transcription factor network regulating pluripotency and differentiation to cardiomyocytes.


Assuntos
Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Miocárdio/metabolismo , Recombinação Genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Biol Chem ; 284(2): 1031-9, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18854307

RESUMO

Prolonged Ca(2+) stimulations often result in a decrease in contractile force of isolated, demembranated human ventricular cardiomyocytes, whereas intact cells are likely to be protected from this deterioration. We hypothesized that cytosolic protein kinase C (PKC) contributes to this protection. Prolonged contracture (10 min) of demembranated human cardiomyocytes at half-maximal Ca(2+) resulted in a 37 +/- 5% reduction of active force (p < 0.01), whereas no decrease (2 +/- 3% increase) was observed in the presence of the cytosol (reconstituted myocytes). The PKC inhibitors GF 109203X and Gö 6976 (10 micromol/liter) partially antagonized the cytosol-mediated protection (15 +/- 5 and 9 +/- 2% decrease in active force, p < 0.05). Quantitation of PKC isoform expression revealed the dominance of the Ca(2+)-dependent PKCalpha over PKCdelta and PKCepsilon (189 +/- 31, 7 +/- 3, and 7 +/- 2 ng/mg protein, respectively). Ca(2+) stimulations of reconstituted human cardiomyocytes resulted in the translocation of endogenous PKCalpha, but not PKCbeta1, delta, and epsilon from the cytosol to the contractile system (PKCalpha association: control, 5 +/- 3 arbitrary units; +Ca(2+), 39 +/- 8 arbitrary units; p < 0.01, EC(50,Ca) = 645 nmol/liter). One of the PKCalpha-binding proteins were identified as the thin filament regulatory protein cardiac troponin I (TnI). Finally, the Ca(2+)-dependent interaction between PKCalpha and TnI was confirmed using purified recombinant proteins (binding without Ca(2+) was only 28 +/- 18% of that with Ca(2+)). Our data suggest that PKCalpha translocates to the contractile system and anchors to TnI in a Ca(2+)-dependent manner in the human heart, contributing to the maintenance of contractile force.


Assuntos
Ventrículos do Coração/enzimologia , Contração Muscular , Miócitos Cardíacos/enzimologia , Proteína Quinase C/metabolismo , Adulto , Cálcio/farmacologia , Citosol/efeitos dos fármacos , Citosol/enzimologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Ventrículos do Coração/efeitos dos fármacos , Humanos , Isoenzimas/metabolismo , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Ligação Proteica , Especificidade por Substrato , Troponina I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...